Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nutrition Research and Practice ; : 591-603, 2021.
Article in English | WPRIM | ID: wpr-902884

ABSTRACT

BACKGROUND/OBJECTIVES@#Unregulated inflammatory responses caused by hyperglycemia may induce diabetes complications. Hesperetin, a bioflavonoid, is a glycoside in citrus fruits and is known to have antioxidant and anticarcinogenic properties. However, the effect of inflammation on the diabetic environment has not been reported to date. In this study, we investigated the effect of hesperetin on proinflammatory cytokine secretion and its underlying mechanistic regulation in THP-1 macrophages with co-treatment LPS and hyperglycemic conditions.MATERIALS/METHODS: THP-1 cells differentiated by PMA (1 μM) were cultured for 48 h in the presence or absence of hesperetin under normoglycemic (5.5 mM/L glucose) or hyperglycemic (25 mM/L glucose) conditions and then treated with LPS (100 ng/mL) for 6 h before harvesting. Inflammation-related proteins and mRNA levels were evaluated by enzyme-linked immunosorbent assay, western blot, and quantitative polymerase chain reaction analyses. @*RESULTS@#Hesperetin (0–100 μM, 48 h) treatment did not affect cell viability. The tumor necrosis factor-α and interleukin-6 levels increased in cells co-treated with LPS under hyperglycemic conditions compared to normoglycemic conditions, and these increases were decreased by hesperetin treatment. The TLR2/4 and MyD88 activity levels increased in cells co-treated with LPS under hyperglycemic conditions compared to normoglycemic conditions; however, hesperetin treatment inhibited the TLR2/4 and MyD88 activity increases. In addition, nuclear factor-κB (NF-κB) and Acetyl-NF-κB levels increased in response to treatment with LPS under hyperglycemic conditions compared to normoglycemic conditions, but those levels were decreased when treated with hesperetin. SIRT3 and SIRT6 expressions were increased by hesperetin treatment. @*CONCLUSIONS@#Our results suggest that hesperetin may be a potential agent for suppressing inflammation in diabetes.

2.
Nutrition Research and Practice ; : 591-603, 2021.
Article in English | WPRIM | ID: wpr-895180

ABSTRACT

BACKGROUND/OBJECTIVES@#Unregulated inflammatory responses caused by hyperglycemia may induce diabetes complications. Hesperetin, a bioflavonoid, is a glycoside in citrus fruits and is known to have antioxidant and anticarcinogenic properties. However, the effect of inflammation on the diabetic environment has not been reported to date. In this study, we investigated the effect of hesperetin on proinflammatory cytokine secretion and its underlying mechanistic regulation in THP-1 macrophages with co-treatment LPS and hyperglycemic conditions.MATERIALS/METHODS: THP-1 cells differentiated by PMA (1 μM) were cultured for 48 h in the presence or absence of hesperetin under normoglycemic (5.5 mM/L glucose) or hyperglycemic (25 mM/L glucose) conditions and then treated with LPS (100 ng/mL) for 6 h before harvesting. Inflammation-related proteins and mRNA levels were evaluated by enzyme-linked immunosorbent assay, western blot, and quantitative polymerase chain reaction analyses. @*RESULTS@#Hesperetin (0–100 μM, 48 h) treatment did not affect cell viability. The tumor necrosis factor-α and interleukin-6 levels increased in cells co-treated with LPS under hyperglycemic conditions compared to normoglycemic conditions, and these increases were decreased by hesperetin treatment. The TLR2/4 and MyD88 activity levels increased in cells co-treated with LPS under hyperglycemic conditions compared to normoglycemic conditions; however, hesperetin treatment inhibited the TLR2/4 and MyD88 activity increases. In addition, nuclear factor-κB (NF-κB) and Acetyl-NF-κB levels increased in response to treatment with LPS under hyperglycemic conditions compared to normoglycemic conditions, but those levels were decreased when treated with hesperetin. SIRT3 and SIRT6 expressions were increased by hesperetin treatment. @*CONCLUSIONS@#Our results suggest that hesperetin may be a potential agent for suppressing inflammation in diabetes.

3.
Clinical Nutrition Research ; : 55-60, 2017.
Article in English | WPRIM | ID: wpr-203740

ABSTRACT

The present study investigated caffeinated beverage consumption and screen time in the association with excessive daytime sleepiness (EDS) and sleep duration. We conducted a cross-sectional study including 249 Korean male high school students. These participants responded to a questionnaire inquiring the information on lifestyle factors, consumption of caffeinated beverages, time spent for screen media, and sleep duration as well as to the Epworth Sleepiness Scale (ESS) questionnaire. EDS was defined as ESS scores of 9 or greater. Students with EDS consumed greater amount of chocolate/cocoa drinks and spent longer time for a TV and a mobile phone than those without EDS (p 8 hours) consumed greater amount of chocolate/cocoa drinks than others (p < 0.05). Screen time did not differ according to the categories of sleep duration. Although these findings do not support causal relationships, they suggest that screen time is associated with EDS, but not with sleep duration, and that consumption of certain types of caffeinated beverages is associated with EDS and sleep duration. Adolescents may need to reduce screen time and caffeine consumption to improve sleep quality and avoid daytime sleepiness.


Subject(s)
Adolescent , Humans , Male , Beverages , Caffeine , Cell Phone , Coffee , Cross-Sectional Studies , Life Style
4.
Immune Network ; : 123-132, 2013.
Article in English | WPRIM | ID: wpr-77569

ABSTRACT

Obesity is consistently increasing in prevalence and can trigger insulin resistance and type 2 diabetes. Many lines of evidence have shown that macrophages play a major role in inflammation associated with obesity. This study was conducted to determine metformin, a widely prescribed drug for type 2 diabetes, would regulate inflammation through down-regulation of scavenger receptors in macrophages from obesity-induced type 2 diabetes. RAW 264.7 cells and peritoneal macrophages were stimulated with LPS to induce inflammation, and C57BL/6N mice were fed a high-fat diet to generate obesity-induced type 2 diabetes mice. Metformin reduced the production of NO, PGE2 and pro-inflammatory cytokines (IL-1beta, IL-6 and TNF-alpha) through down-regulation of NF-kappaB translocation in macrophages in a dose-dependent manner. On the other hand, the protein expressions of anti-inflammatory cytokines, IL-4 and IL-10, were enhanced or maintained by metformin. Also, metformin suppressed secretion of TNF-alpha and reduced the protein and mRNA expression of TNF-alpha in obese mice as well as in macrophages. The expression of scavenger receptors, CD36 and SR-A, were attenuated by metformin in macrophages and obese mice. These results suggest that metformin may attenuate inflammatory responses by suppressing the production of TNF-alpha and the expressions of scavenger receptors.


Subject(s)
Animals , Mice , Cytokines , Diet, High-Fat , Dinoprostone , Down-Regulation , Hand , Inflammation , Insulin Resistance , Interleukin-10 , Interleukin-4 , Interleukin-6 , Macrophages , Macrophages, Peritoneal , Metformin , Mice, Obese , NF-kappa B , Obesity , Prevalence , Receptors, Scavenger , RNA, Messenger , Tumor Necrosis Factor-alpha
5.
Biomolecules & Therapeutics ; : 35-41, 2013.
Article in English | WPRIM | ID: wpr-19400

ABSTRACT

Metformin is widely used for T2D therapy but its cellular mechanism of action is undefined. Recent studies on the mechanism of metformin in T2D have demonstrated involvement of the immune system. Current immunotherapies focus on the potential of immunomodulatory strategies for the treatment of T2D. In this study, we examined the effects of metformin on the antigen-presenting function of antigen-presenting cells (APCs). Metformin decreased both MHC class I and class II-restricted presentation of OVA and suppressed the expression of both MHC molecules and co-stimulatory factors such as CD54, CD80, and CD86 in DCs, but did not affect the phagocytic activity toward exogenous OVA. The class II-restricted OVA presentation-regulating activity of metformin was also confirmed using mice that had been injected with metformin followed by soluble OVA. These results provide an understanding of the mechanisms of the T cell response-regulating activity of metformin through the inhibition of MHC-restricted antigen presentation in relation to its actions on APCs.


Subject(s)
Animals , Mice , Antigen Presentation , Antigen-Presenting Cells , Immune System , Immunotherapy , Metformin , Ovum
6.
Immune Network ; : 181-188, 2012.
Article in English | WPRIM | ID: wpr-226027

ABSTRACT

Dioscoreae Rhizome (DR) has been used in traditional medicine to treat numerous diseases and is reported to have anti-diabetes and anti-tumor activities. To identify a bioactive traditional medicine with anti-inflammatory activity of a water extract of DR (EDR), we determined the mRNA and protein levels of proinflammatory cytokines in macrophages through RT-PCR and western blot analysis and performed a FACS analysis for measuring surface molecules. EDR dose-dependently decreased the production of NO and pro-inflammatory cytokines such as IL-1beta, IL-6, TNF-alpha, and PGE2, as well as mRNA levels of iNOS, COX-2, and pro-inflammatory cytokines, as determined by western blot and RT-PCR analysis, respectively. The expression of co-stimulatory molecules such as B7-1 and B7-2 was also reduced by EDR. Furthermore, activation of the nuclear transcription factor, NF-kappaB, but not that of IL-4 and IL-10, in macrophages was inhibited by EDR. These results show that EDR decreased pro-inflammatory cytokines via inhibition of NF-kappaB-dependent inflammatory protein level, suggesting that EDR could be a useful immunomodulatory agent for treating immunological diseases.


Subject(s)
Blotting, Western , Cytokines , Dinoprostone , Dioscorea , Immune System Diseases , Inflammation , Interleukin-10 , Interleukin-4 , Interleukin-6 , Macrophages , Medicine, Traditional , NF-kappa B , Rhizome , RNA, Messenger , Transcription Factors , Tumor Necrosis Factor-alpha , Water
7.
Journal of the Korean Academy of Child and Adolescent Psychiatry ; : 287-293, 2011.
Article in Korean | WPRIM | ID: wpr-139621

ABSTRACT

OBJECTIVES: The region of chromosome 5p14 is known to be associated with autism spectrum disorder (ASD). The cadherin9 (CDH9) and cadherin10 (CDH10) genes are located in the region of chromosome 5p14 and reported to be associated with ASD in the Caucasian population. We performed an association study to identify if single nucleotide polymorphisms (SNPs) located on the CDH9 and CDH10 genes are associated in the Korean population. METHODS: Genomic DNA was extracted from the blood of 214 patients with ASD and 258 controls. SNPs selected from two genes were genotyped using an Illumina Golden-Gate Genotyping assay with VeraCode technology. Statistical analysis was performed using SAS and Plink software. RESULTS: All controls and ASD patients were in Hardy-Weinberg equilibrium. In the results of logistic regression analyses for the genotype model and the chi-square test for the allele model, we found that SNPs on the CDH9 and CDH10 genes were not associated with ASD. CONCLUSION: Our data suggests that the CDH9 and CDH10 genes are not associated with ASD in the Korean population.


Subject(s)
Child , Humans , Alleles , Autistic Disorder , Autism Spectrum Disorder , DNA , Genotype , Logistic Models , Phenothiazines , Polymorphism, Single Nucleotide
8.
Journal of the Korean Academy of Child and Adolescent Psychiatry ; : 287-293, 2011.
Article in Korean | WPRIM | ID: wpr-139620

ABSTRACT

OBJECTIVES: The region of chromosome 5p14 is known to be associated with autism spectrum disorder (ASD). The cadherin9 (CDH9) and cadherin10 (CDH10) genes are located in the region of chromosome 5p14 and reported to be associated with ASD in the Caucasian population. We performed an association study to identify if single nucleotide polymorphisms (SNPs) located on the CDH9 and CDH10 genes are associated in the Korean population. METHODS: Genomic DNA was extracted from the blood of 214 patients with ASD and 258 controls. SNPs selected from two genes were genotyped using an Illumina Golden-Gate Genotyping assay with VeraCode technology. Statistical analysis was performed using SAS and Plink software. RESULTS: All controls and ASD patients were in Hardy-Weinberg equilibrium. In the results of logistic regression analyses for the genotype model and the chi-square test for the allele model, we found that SNPs on the CDH9 and CDH10 genes were not associated with ASD. CONCLUSION: Our data suggests that the CDH9 and CDH10 genes are not associated with ASD in the Korean population.


Subject(s)
Child , Humans , Alleles , Autistic Disorder , Autism Spectrum Disorder , DNA , Genotype , Logistic Models , Phenothiazines , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL